Abstract

Measurements of gas mixture adsorption equilibria at high pressures are important for assessing actual adsorbent selectivities but are often out of reach, given the challenging nature of the required experiments. Here, we report a high-pressure gravimetric binary gas adsorption equilibrium measurement system based on simultaneous gas density and mixture adsorption measurements in a single gas cell coupled to a magnetic-suspension balance. Compared to traditional techniques which rely on analytical measurements of gas composition, this approach does not require any sampling. Adsorption measurements of two gas mixtures (0.500 N2 + 0.500 CH4 and 0.400 N2 + 0.600 CO2, mole fraction) on a commercially available molecular sieve (NaY, sodium molecular sieve type Y) were carried out in the temperature range 282 to 325 K with a pressure up to 10 MPa. A prediction method for the gas mixture adsorption equilibria in a closed system using the ideal adsorbed solution theory (IAST) model was used to compare the experimental results. For binary mixtures of components with similar adsorption capacities (here N2 and CH4), the system can measure the adsorption equilibria at pressures higher than 1.0 MPa and the result agrees well with the IAST model prediction. For two gases with very different adsorption capacities, the uncertainty in the adsorption equilibrium measurement is much larger. The dominant uncertainty source is the gas density measurement, whose uncertainty could potentially be cut to half if the current titanium sinker is replaced with a sinker made of single-crystal silicon and with a larger volume.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.