Abstract

Effective treatment of dye wastewater is currently a great concern and a research hotspot. Electrocatalysis has unique advantages in treating toxic and harmful refractory dye wastewater; however, it requires an external power supply, which increases energy consumption and cost. As a new energy collection technology, triboelectric nanogenerators (TENGs) have gained considerable attention. In this study, an origami multilayer spherical friction nanogenerator (Q-TENG) was developed for the removal of methylene blue (MB) from dye wastewater. The current and voltage output performances of Q-TENG were explored, and the removal and degradation mechanisms of MB were discussed. Results indicated that when the water wave acceleration a = 3 m/s2, the open-circuit voltage and short-circuit current reached the maximum values of 179 V and 9.4 μA, respectively. The self-powered catalytic degradation of MB using Q-TENG can produce more •OH and SO4-•, and the free radicals increase with increasing action time of Q-TENG, thus increasing the degradation efficiency of MB. This study provides a new strategy for solving the problem of high energy consumption during electrochemical reactions in wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.