Abstract

AbstractThe geometric transformation of a descending plate, such as from steep to flat subduction in response to a change from normal to overthickened oceanic crust during subduction, is a common and important geological process at modern or fossil convergent margins. However, the links between this process and the metamorphic evolution of the exhumation of oceanic (ultra)high‐pressure eclogites are poorly understood. Here we report detailed petrological, mineralogical, phase equilibria, and secondary ion mass spectrometry zircon and rutile U‐Pb age data for the Dong Co eclogites at the western segment of the Bangong‐Nujiang suture zone, central Tibet. Our data reveal that the Dong Co eclogites experienced peak eclogite‐facies metamorphism (T = 610–630°C, P = 2.4–2.6 GPa) and underwent multiple stages of retrograde metamorphism. P‐T pseudosections and compositional isopleths of garnet define a complex clockwise P‐T‐t path (including two stages of decompression‐dominated P‐T path and one of isobaric heating), suggesting varying exhumation velocities. Combining previous studies with our new results, we suggest that the transformation from rapid to slow exhumation is dominated by the transition from steep to flat subduction. The flat‐slab segment, caused by subduction of buoyant oceanic plateau, led to an extremely slow exhumation and a strong overprinting of HP granulite facies at a depth of ~50 km at ~177 Ma. The slab rollback that followed in response to a substantial density increase of the eclogitized oceanic plateau resulted in another rapid exhumation process at ~168 Ma and triggered the formation of abundant near‐simultaneous or later magmatic rocks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.