Abstract

In this letter, we are reporting the change of superconducting critical temperature in Sb2Se3 topological insulator under the influence of an external hydrostatic pressure based on first principles electronic structure calculations coupled with Migdal–Eliashberg model. Experimentally, it was shown previously that Sb2Se3 was undergoing through a transition to a superconducting phase when subjected to a compressive pressure. Our results show that the critical temperature increases up to 6.15 K under the pressure unto 40 GPa and, subsequently, drops down until 70 GPa. Throughout this pressure range, the system is preserving the initial Pnma symmetry without any structural transformation. Our results suggest that the possible relevant mechanism behind the superconductivity in Sb2Se3 is primarily the electron–phonon coupling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.