Abstract

High pressure 2H multipulse NMR techniques were used to investigate the effects of pressure on the structure and dynamics of selectively deuterated 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) multilamellar aqueous dispersions. The samples were deuterated on both chains at positions 2, 9, or 13. The deuterium lineshapes, the spin-lattice relaxation times, T1, and the spin-spin relaxation times, T2, were measured as a function of pressure from 1 bar to 5 kbar at 50 degrees C for the three deuterated DPPC samples. This pressure range permitted us to explore the phase behavior of DPPC from the liquid-crystalline (LC) phase through various gel phases such as the Gel I (P beta), Gel II (L beta), Gel III, Gel X, and the interdigitated, Gel i, gel phase. Pressure had an ordering effect on all chain segments both in the LC phase and various high pressure gel phases as indicated by the increase in SCD bond order parameter and the first moment, M1, with pressure. Compared with the adjacent gel phases, the Gel i phase had the highest order. Also, in all gel phases the carbon-9 segment of the chains had the most restricted motions in contrast to the LC phase, where the carbon-2 segment was the most restricted. In the LC phase, T1 and T2 values for all segments decreased with pressure, indicative of the fast correlation time regime. Similarly, T1 decreased with pressure in the Gel I and the interdigitated Gel i gel phases but changed to the slow correlation time regime at the Gel i/Gel II phase transition. For T2, which reflects slow motions, the transition to the slow correlation time regime occurred already at LC/Gel I phase transition. Considering the various motions which contribute to relaxation, the behavior of T1 and T2 in the Gel 11 through Gel X phases showing discontinuities and slope changes at the phase transitions was, as expected, quite complex.In addition we found a straight line relationship for T-1 vs. S2D, and T-1 vs. S2CD for the deuterons in the 9 and 13 positions in the LC phase in the pressure range investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.