Abstract

A fully passive, optical fiber connectivity solution for polymer waveguides embedded in electro-optical printed circuit boards (EOCB) is described and its preliminary results for single-mode applications demonstrated. The connectivity solution is based on a pluggable glass-fiber connector interface and a self-alignment packaging technology using high-precision silicon V-grooves. The V-grooves provide precise positioning of the glass-fiber relative to the polymer waveguide through alignment structures on the EOCB, patterned in the same laser direct writing fabrication step as the waveguide core. We realized an EOCB module with an LC-connector pluggable adaptor interface assembled on one side of the EOCB. With this module, we were able to prove for the first time the usability of our connectivity solution for single-mode applications. Coupling losses as low as 1.2 dB between a standard LC-connector and the single-mode polymer waveguide embedded into the EOCB have been reached. This passive packaging solution provides a cost-effective optical connectivity to wave-guides in EOCBs, which will be required in future generations of optical interconnects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.