Abstract

I present what is believed to be the first demonstration of using the cross-phase modulation (XPM) effect to achieve high-precision, all-optical synchronization and stabilization of the pulse repetition rate of a dissipative soliton resonance (DSR) mode-locked (ML) fiber laser working in the 1.06 µm wavelength range. Nanosecond 1.55 µm Master oscillator pulses were injected into the Slave cavity of the DSR laser to induce the XPM effect and subsequently synchronize both repetition rates. When referencing the Master laser to a rubidium frequency standard, the fractional instability of the DSR ML laser pulse repetition rate reached 1.26 × 10-12 for 1000 s integration time. The locking range and stability of the XPM synchronization are experimentally verified under varying conditions and discussed in the paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.