Abstract

The 1600-1700-nm ultrafast fiber lasers attract great interests in the deep multiphoton microscopy, due to the reduced levels of the tissue scattering and absorption. Here, we report on the 86.7-MHz, 717-mW, 91.2-fs, all-fiber laser located in the spectral range from 1600 nm to 1700nm. The soliton self-frequency shift (SSFS) was introduced into the Er:Yb co-doped fiber amplifier (EYDFA) to generate the high-power, 1600-1700-nm Raman soliton. Detailed investigations of the nonlinear fiber amplification process were implemented in optimizing the generated Raman soliton pulses. The miniature multiphoton microscopy was further realized with this home-built laser source. The clearly imaging results can be achieved by collecting the generated harmonic signals from the mouse tail skin tissue with a penetration depth of ∼500 µm. The experimental results indicate the great potential in utilizing this 1600-1700-nm fiber laser in the deep multiphoton microscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call