Abstract

Sodium titanate nanopowder (nominal formula Na1.5H0.5Ti3O7) was directly synthesized using a continuous hydrothermal flow synthesis process using a relatively low base concentration (4 M NaOH) in process. The as-made titanate nanomaterials were characterised using powder X-ray diffraction, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, Raman spectroscopy, Brunauer–Emmett–Teller analysis and transmission electron microscopy, and evaluated as potential electrode materials for Li-ion and Na-ion batteries. Cyclic voltammetry studies on half-cells revealed that the sodium titanate nanomaterial stored charge primarily through a combination of pseudocapacitive and diffusion-limited processes in both systems. Electrochemical cycling tests at a high specific current of 1000 mA g−1, revealed that the Li-ion and Na-ion cells retained relatively high specific capacities after 400 cycles of 131 and 87 mAh g−1, respectively. This study demonstrates the potential of CHFS-made sodium titanate nanopower as an anode material for both Li- and Na-ion cell chemistries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.