Abstract

A novel multi-oxide layer structure for vertical cavity surface emitting laser (VCSEL) structures is proposed to achieve higher single mode output power. The structure has four oxide layers with different aperture sizes and thicknesses. The oxide layer thicknesses are optimized simultaneously to reach the highest single mode output power. A heuristic method is proposed for plotting the influence of these variable changes on the operation of optical output power. A comprehensive optical-electrical thermal-gain self-consistent VCSEL model is used to simulate the continuous-wave operation of the multi-layer oxide VCSELs. A comparison between optimized VCSELs with different structures is presented. The results show that by using multi-oxide layers with different thicknesses, higher single-mode optical output power could be achieved in comparison with multi-oxide layer structures with the same thicknesses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.