Abstract
The millimeter-wave system of the remote steering launcher at the upper port level is composed of beamlines that are rated for 2-MW continuous-wave operation at 170 GHz. In each beamline, a torus window is located between the entrance to the in-vessel square corrugated waveguide and the steerable mirrors in the launcher back end. In the reference design, the maximum steering angle of 12 deg imposes a 27-mm off-center beam shift to the window disk center, which in turn leads to asymmetrical heating of the window. This raises particular concerns of enhanced thermomechanical stresses in the window and in the metallic window cuffs. In order to qualify the optical, mechanical, and thermohydraulic design, high-power short-pulse and thermohydraulic tests were performed using a prototype chemical vapor deposition diamond torus window developed and manufactured at Forschungszentrum Karlsruhe. It was proven that arcing did not occur even under maximum millimeter-wave power levels available (up to 0.53 MW) and that the millimeter-wave beam profile was fully maintained. A test facility allowed thermohydraulic studies of the window cooling system with parameters characteristic for component cooling water loops at ITER (pw = 1.0 MPa, Tw = 40°C).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.