Abstract

We report the theoretical and experimental results of an examination of the structure needed to achieve high output power in resonant tunneling diode (RTD) oscillators in the terahertz range. An offset-fed slot antenna and antenna width adjustments were employed in a single oscillator to increase the output power by increasing the radiation conductance and impedance matching. A high output power oscillation (~400 μW) at 530-590 GHz was obtained by RTDs with a large negative deferential conductance (NDC) region and offset-fed slot antennas. The maximization of the output power that was obtained by adjusting the antenna width was attributed to the impedance matching between the RTD and antenna. An output power of >;1 mW is theoretically expected in an oscillator that combines an RTD with a large NDC region, offset-fed slot antenna, and antenna width adjustment. In an array configuration, oscillators with an offset structure were employed for array elements and connected together with the metal-insulator-metal stub structure. A single peak was observed in the oscillation spectrum, and combined output powers of 610, 270, and 180 μW at 620, 770, and 810 GHz were obtained in a two-element array.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.