Abstract

The clinical performance of light polymerized dental composites is greatly influenced by the quality of the light curing unit (LCU) used. Commonly used halogen LCUs have some specific drawbacks such as decreasing light output with time. This may result in a low degree of monomer conversion of the composites with negative clinical implications. Previous studies have shown that blue light emitting diode (LED) LCUs have the potential to polymerize dental composites without having the drawbacks of halogen LCUs. Since these studies were carried out LED technology has advanced significantly and commercial LED LCUs are now becoming available. This study investigates the Barcol hardness as a function of depth, and the compressive strength of dental composites that had been polymerized for 40 or 20 s with two high power LED LCU prototypes, a commercial LED LCU, and a commercial halogen LCU. In addition the radiometric properties of the LCUs were characterized. The two high power prototype LED LCUs and the halogen LCU showed a satisfactory and similar hardness-depth performance whereas the hardness of the materials polymerized with the commercial LED LCU rapidly decreased with sample depth and reduced polymerization time (20 s). There were statistically significant differences in the overall compressive strengths of composites polymerized with different LCUs at the 95% significance level ( p=0.0016) with the two high power LED LCU prototypes and the halogen LCU forming a statistically homogenous group. In conclusion, LED LCU polymerization technology can reach the performance level of halogen LCUs. One of the first commercial LED LCUs however lacked the power reserves of the high power LED LCU prototypes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call