Abstract

Objective: The primary objective of this pilot study was to test the hypotheses that (i) depth of cure and (ii) compressive strength of dental composites cured with either a light emitting diode (LED) based light curing unit (LCU) or a conventional halogen LCU do not differ significantly. The second objective of this study was to characterise irradiance and the emitted light spectra for both LCUs to allow comparisons between the units. Methods: Dental composite (Spectrum TPH, shades A2 and A4) was cured for 40 s with either a commercial halogen LCU or a LED LCU, respectively. The LED LCU uses 27 blue LEDs as the light source. The composites' depth of cure was measured for 10 samples of 4 mm diameter and 8 mm depth for each shade with a penetrometer. The results were compared using a Student's t-test. Compressive strengths were determined after 6 and 72 h, for six samples of 4 mm diameter and 6 mm depth for each shade after being polymerised for 40 s from each end of the mould. Groups were compared using a three way ANOVA. Results: The conventional halogen LCU cured composites significantly ( p<0.05) deeper (6.40 mm A2, 5.19 mm A4) than did the LED LCU (5.33 mm A2, 4.27 mm A4). Both units cured the composite deeper than required by both ISO 4049 and the manufacturer. A three way ANOVA showed that there were no significant differences in the compressive strengths of samples produced with either the LED LCU or the halogen LCU ( p=0.460). Significant differences in compressive strength of samples stored for 6 and 72 h ( p=0.0006) and of samples of different shades ( p=0.035) were found as confirmed by the three way ANOVA. The light spectra of both units differed strongly. While the halogen LCU showed a broad distribution of wavelengths with a power peak at 497 nm, the LED LCU emitted most of the generated light at 465 nm. The LED LCU produced a total irradiance of 350 mW cm −2 whereas the halogen LCU produced a total irradiance of 755 mW cm −2. Significance: The results showed that both units provided sufficient output to exceed minimum requirements in terms of composites' depth of cure according to ISO 4049 and the depth of cure and the composites' compressive strength stated by the manufacturer. Compressive strengths of dental composites cured under laboratory conditions with a LED LCU were statistically equivalent to those cured with a conventional halogen LCU. With its inherent advantages, such as a constant power output over the lifetime of the diodes, LED LCUs have great potential to achieve a clinically consistent quality of composite cure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call