Abstract
We report a high power and high energy all-fiber-based single frequency nanosecond pulsed laser source at ~1918.4 nm in master oscillator-power amplifier (MOPA) configuration. The pre-shaped pulsed fiber laser seed with a variable pulse duration and repetition rate were achieved by directly modulating a continuous wave (CW) single frequency fiber laser using a fast electro-optical modulator (EOM) driven by a arbitrary waveform generator (AWG). One piece of single mode, large (30 μm) core, polarization-maintaining (PM) highly thulium-doped (Tm-doped) germanate glass fiber (LC-TGF) was used to boost the pulse power and pulse energy of these modulated pulses in the final power amplifier. To the best of our knowledge, the highest average power 16 W for single frequency transform-limited ~2.0 ns pulses at 500 kHz was achieved, and the highest peak power 78.1 kW was achieved at 100 kHz. Furthermore, mJ pulse energy was achieved for ~15 ns pulses at 1 kHz repetition rate. Theoretical modeling of the large-core highly Tm-doped germanate glass double-cladding fiber amplifier (LC-TG-DC-FA) is also present for 2 μm nanosecond pulse amplification. A good agreement between the theoretical and experimental results was achieved. The model was also utilized to investigate the dependence of the stored energy in the LC-TGF on the pump power, seed energy and repetition rate, which can be used to design and optimize the LC-TG-DC-FA to achieve higher pulse energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.