Abstract

We report CF3-substituted porphyrins and evaluate their use as photosensitizers in water-splitting dye-sensitized photoelectrochemical cells (WS-DSPECs) by characterizing interfacial electron transfer on metal oxide surfaces. By using (CF3)2C6H3 instead of C6F5 substituents at the meso positions, we obtain the desired high potentials while avoiding the sensitivity of C6F5 substituents to nucleophilic substitution, a process that limits the types of synthetic reactions that can be used. Both the number of CF3 groups and the central metal tune the ground and excited-state potentials. A pair of porphyrins bearing carboxylic acids as anchoring groups were deposited on SnO2 and TiO2 surfaces, and the interfacial charge-injection and charge-recombination kinetics were characterized by using a combination of computational modeling, terahertz measurements, and transient absorption spectroscopy. We find that both free-base and metalated porphyrins inject into SnO2 and that recombination is slower for the latter ca...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.