Abstract

Water-splitting dye-sensitized photoelectrochemical cells (WS-DSPECs) utilize high surface area TiO2 electrodes functionalized with light absorbing sensitizers and water oxidation catalysts. Because water splitting requires vectorial electron transfer from the catalyst to the sensitizer to the TiO2 surface, attaching both sensitizer and catalyst to TiO2 in the correct sequence and stabilizing them under photoelectrochemical conditions has been a challenging problem. Rutile-phase IrO2 nanoparticles can be deposited directly on the TiO2 electrode by adsorbing citrate-capped amorphous IrOx and then sintering at 450 °C. Electrodes functionalized with these nanocrystalline particles show higher activity than those made from ligand-capped amorphous IrOx without sintering. In the WS-DSPEC, the Coulombic efficiency for oxygen evolution from the sintered nanoparticle photoelectrodes was near unity. The loading of colloidal IrOx and IrO2 particles onto the porous TiO2 electrodes was quantified by neutron activation analysis. Photovoltage measurements suggest that at high catalyst loading the dominant charge recombination pathway is from photoinjected electrons to IrO2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.