Abstract

Adenoviruses are very efficient vectors for delivering therapeutic genes in preclinical and clinical trials. However, randomized controlled human trials have often been lacking clear clinically relevant results. We hypothesized that high lipid levels and specific lipoproteins could significantly decrease adenoviral transduction efficiency in vivo. Here we demonstrate that mice on a high fat diet have lower transgene expression compared to mice on a regular chow. In addition, on a high fat diet, ApoE−/− mice have much higher plasma transgene levels compared to LDLR-deficient mice. We also found that specific lipoprotein receptors play an important role in adenoviral transduction. These findings suggest that high plasma lipid levels, especially apoE-containing lipoproteins, reduce efficacy of adenoviral transduction in mice, which implies that high cholesterol levels in humans could be protective against viral infections and also lead to insufficient transgene expression in clinical trials using adenoviral vectors.

Highlights

  • One likely explanation for the lack of therapeutic effects in clinical trials is that sufficient levels of transgene expression in target tissues have not been reached

  • We previously reported differences in plasma transgene expression after systemic adenoviral (Ad) human VEGF-A gene transfer in four different hyperlipidemic mouse models the same amount of virus was used in all models[9]

  • We demonstrate that mice fed with a high fat diet (HFD) had a significantly lower transgene expression after both systemic and local AdVEGF-A gene transfer compared to mice on a regular chow diet (RCD) indicating that higher lipid levels are decreasing Ad transduction efficiency

Read more

Summary

Introduction

One likely explanation for the lack of therapeutic effects in clinical trials is that sufficient levels of transgene expression in target tissues have not been reached. Shayakhmetov et al have reported a novel CAR-independent pathway used by adenoviruses for the transduction of hepatocytes in vivo[5] In this pathway, viral particles first bind to blood coagulation factor FIX and the complement factor C4BP which enable the binding of these complexes to heparan sulfate proteoglycans (HSPG) and LDL receptor related protein (LRP) leading to internalization of the viruses. Viral particles first bind to blood coagulation factor FIX and the complement factor C4BP which enable the binding of these complexes to heparan sulfate proteoglycans (HSPG) and LDL receptor related protein (LRP) leading to internalization of the viruses These kind of interactions have been reported with several other viruses. Lipoproteins inhibited Ad uptake via a pathway mediated by HSPGs, LRP and LDLR Together, these findings suggest that high lipid levels in humans could affect viral transduction leading to insufficient transgene expression after Ad gene transfer. These results might partly explain the disappointing results after cardiovascular clinical Ad gene therapy trials as the treated patients in most cases have had significantly elevated blood lipid levels

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call