Abstract

The properties of zinc oxynitride semiconductors and their associated thin film transistors are studied. Reactively sputtered zinc oxynitride films exhibit n-type conduction, and nitrogen-rich compositions result in relatively high electron mobility. Nitrogen vacancies are anticipated to act as shallow electron donors, as their calculated formation energy is lowest among the possible types of point defects. The carrier density can be reduced by substituting zinc with metals such as gallium or aluminum, which form stronger bonds with nitrogen than zinc does. The electrical properties of gallium-doped zinc oxynitride thin films and their respective devices demonstrate the carrier suppression effect accordingly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.