Abstract

Boron-doped zinc oxide (BZO) thin films have been fabricated by spray pyrolysis on a glass substrate. The morphology and electrical properties of the thin films were investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses were performed. It was found that [B]/[Zn] ratio altered both the microstructure and concentration of the BZO thin films. The film grain size was reduced by increasing the [B]/[Zn] ratio. The highest Hall mobility was 3.65 cm2 V-1 s-1 for the undoped ZnO thin film, and the highest carrier concentration of 1.0×1019 cm-3 was achieved for the as-deposited BZO thin film with [B]/[Zn] = 1.5 at. %. Conductivity was determined at different measurement temperatures and shallow donors provided the dominate conduction mechanism for the as-deposited BZO thin films. After 600 °C annealing, shallow level reduction and donors with a high activation energy of 129±6 meV in the BZO thin films were characterized, and the shallow donors that dominate the carrier concentration for the as-deposited spray-pyrolized BZO thin film were eliminated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call