Abstract
This paper presents a text-independent speaker recognition system based on the voiced segments of the speech signal. The proposed system uses feedforward MLP classification with only a limited amount of training and testing data and gives a comparatively high accuracy. The techniques employed are: the Rasta-PLP speech analysis for parameter estimation, a feedforward MLP for voiced/unvoiced segmentation and a large number (equal to the number of speakers) of simple MLPs for the classification procedure. The system has been trained and tested using TIMIT and NTIMIT databases. The verification experiments presented a high accuracy rate: above 99% for clean speech (TIMIT) and 74.7%, for noisy speech (NTIMIT). Additional experiments were performed comparing the proposed approach of using voiced segments with only vowels and all phonetic categories with results favorable to the use of voiced segments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.