Abstract

The two largest factors affecting automatic speaker identification performance are the size of the population and the degradations introduced by noisy communication channels (e.g., telephone transmission). To examine experimentally these two factors, this paper presents text-independent speaker identification results for varying speaker population sizes up to 630 speakers for both clean, wideband speech and telephone speech. A system based on Gaussian mixture speaker models is used for speaker identification and experiments are conducted on the TIMIT and NTIMIT databases. This is believed to be the first speaker identification experiments on the complete 630 speaker TIMIT and NTIMIT databases and the largest text-independent speaker identification task reported to date. Identification accuracies of 99.5% and 60.7% are achieved on the TIMIT and NTIMIT databases, respectively. This paper also presents experiments which examine and attempt to quantify the performance loss associated with various telephone degradations by systematically degrading the TIMIT speech in a manner consistent with measured NTIMIT degradations and measuring the performance loss at each step. It is found that the standard degradations of filtering and additive noise do not account for all of the performance gap between the TIMIT and NTIMIT data. Measurements of nonlinear microphone distortions are also described which may explain the additional performance loss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.