Abstract

Hard carbon exhibits high theoretical capacity for sodium-ion batteries. However, its practical application suffers from low electric conductivity, poor electrochemical stability, and sluggish kinetics. To tackle these challenges, novel nitrogen-doped carbon spheres with mesopores, ultrathin nanostructure, and optimal graphitization are prepared by a three-step procedure. We find that the as-prepared sample (NMCSs-800) with an optimal structure and nitrogen content delivers a high reversible sodium storage capacity of 334.7 mA h/g at 50 mA/g and an ultrahigh rate performance of 93.9 mA h/g at 5 A/g, which is better than most state-of-the-art carbon materials. The improved energy storage capacity is attributed to its unique architecture and optimal nitrogen doping, which provide abundant active sites, defects, and voids. Moreover, kinetic analysis and in situ Raman spectroscopy results reveal adsorption and adsorption-intercalation mechanisms for Na+ storage in hard carbon at the slope region above 0.3 V and the other slope region of 0.3-0.02 V, respectively. We believe that our findings provide a novel tactic to design elaborate nanomaterials for the high-performance sodium-ion battery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.