Abstract

Perturbations always affect livestock during the breeding process, including harmful diseases. Researching the impact of disease outbreaks on pig herds is extremely important so that disease control measures can be applied early. However, conducting practical experiments on disease outbreaks is extremely expensive. Precision feeding systems (PFS) for pigs use data on the animal’s own feed intake to calculate the appropriate amount of feed for each individual. This helps increase productivity and product quality while contributing to reducing waste generation in the environment. Daily feed intake (DFI) and cumulative feed intake (CFI) data can be automatically collected and estimated from the PFS, which can help detect or predict disease outbreaks. In this article, we introduce an advanced simulation model of the PFS for pigs and the integration of disease outbreak models into this system. A disease outbreak simulation application within the pig herd raised by the precision feeding method is also developed for running high-performance experimental simulations. The results of the simulation scenarios are analyzed and compared with data from a real-world experiment to assess the accuracy of the application. The correlation coefficient values of DFI in all scenarios fall within the range of 0.25 to 0.5, suggesting almost no correlation between simulated DFI and actual DFI. The overall average correlation coefficient of CFI for all scenarios is 0.764, falling within the strong correlation range. It can be concluded that the simulation accurately represents CFI values compared to reality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.