Abstract

In this letter, high-performance low-temperature polysilicon thin-film transistors (TFTs) with double-gate (DG) structure and controlled lateral grain growth have been demonstrated by excimer laser crystallization. Via a proper excimer laser condition, along with the a-Si step height beside the bottom gate, a superlateral growth of Si was formed in the channel length plateau. Therefore, the DG TFTs with lateral silicon grains in the channel regions exhibited better current-voltage characteristics, as compared with the conventional top-gate ones. The proposed DG TFTs ( <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">W</i> / <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">L</i> = 1/1 mum) had the field-effect mobility exceeding 550 cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> /Vmiddots, an on/off current ratio that is higher than 10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">8</sup> , superior short-channel characteristics, and higher current drivability. In addition, the device-to-device uniformity could be improved since grain growth could be artificially controlled by the spatial plateau structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.