Abstract
The demand of low power high density integrated circuits is increasing in modern battery operated portable systems. Sub-threshold region of MOS transistors is the most desirable region for energy efficient circuit design. The operating ultra-low power supply voltage is the key design constraint with accurate output performance in sub-threshold region. Degrading of the performance metrics in Static random access memory (SRAM) cell with process variation effects are of major concern in sub-threshold region. In this paper, a bootstrapped driver circuit and a bootstrapped driver dynamic body biasing technique is proposed to assist write operation which improves the write-ability of sub-threshold 8T-SRAM cell under process variations. The bootstrapped driver circuit minimizes the write delay of SRAM cell. The bootstrapped driver dynamic body bias increases the output voltage levels by boosting factor therefore increasing in switching threshold voltage of MOS devices during hold and read operation of SRAM latch. The increment in threshold voltage improves the static noise margin and minimizing the process variation effects. Monte-Carlo simulation results with 3 $$\sigma $$ ? Gaussian distributions show the improvements in write delay by 11.25 %, read SNM by 12.20 % and write SNM by 12.57 % in 8T-SRAM cell under process variations at 32 nm bulk CMOS process technology node.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.