Abstract

Herein, the molybdenum disulfide (MoS2) was simultaneously exfoliated and noncovalently functionalized by ultrasonication in a Pluronic aqueous solution and then was used to prepare the poly(ethylene oxide) (PEO) based nanocomposite films. The homogeneous dispersion of MoS2 and strong nanosheets/matrix interfacial adhesion were confirmed by representative electron microscopes. The considerable barrier action of the effective MoS2 nanosheets obviously restricted the ordering of crystal lamellae and the motion of polymer chains and then resulted in the formation of the devastated spherocrystal structure and morphological alterations in the nanocomposites, which were confirmed by polarized optical microscopy and the high value of the glass transition temperature. Importantly, MoS2 nanosheets hold great promise in reinforcing the thermal stability and mechanical property of polymer by increasing the effective volume of MoS2 nanosheets. A substantial reinforcement effect of PEO/MoS2 composite films was achieved: even at a relatively low loading level (0.9 wt %), 88.1% increase in Young's modulus, 72.7% increase in stress-at-failure, and 62.1 °C increment of the temperature corresponding to half weight loss were obtained. These significant reinforcements can be attributed to the gradient interface region, which could effectively transfer the stress from the weak polymer chains to the robust nanosheets, thus endowing the PEO/MoS2 composite films with excellent properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.