Abstract

Plasma separation is of high interest for lateral flow tests using whole blood as sample liquids. Here, we built a passive microfluidic device for plasma separation with high performance. This device was made by blood filtration membrane and off-stoichiometry thiol–ene (OSTE) pillar forest. OSTE pillar forest was fabricated by double replica moldings of a laser-cut polymethylmethacrylate (PMMA) mold, which has a uniform microstructure. This device utilized a filtration membrane to separate plasma from whole blood samples and used hydrophilic OSTE pillar forest as the capillary pump to propel the plasma. The device can be used to separate blood plasma with high purity for later use in lateral flow tests. The device can process 45 L of whole blood in 72 s and achieves a plasma separation yield as high as 60.0%. The protein recovery rate of separated plasma is 85.5%, which is on par with state-of-the-art technologies. This device can be further developed into lateral flow tests for biomarker detection in whole blood.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.