Abstract
AbstractAn important advancement towards the realization of miniaturized and fully integrated vacuum electronic devices will be the development of on‐chip integrated electron sources with stable and reproducible performances. Here, the fabrication of high‐performance on‐chip thermionic electron micro‐emitter arrays is demonstrated by exploiting suspended super‐aligned carbon nanotube films as thermionic filaments. For single micro‐emitter, an electron emission current up to ≈20 µA and density as high as ≈1.33 A cm−2 are obtained at a low‐driven voltage of 3.9 V. The turn‐on/off time of a single micro‐emitter is measured to be less than 1 µs. Particularly, stable (±1.2% emission current fluctuation for 30 min) and reproducible (±0.2% driven voltage variation over 27 cycles) electron emission have been experimentally observed under a low vacuum of ≈5 × 10−4 Pa. Even under a rough vacuum of ≈10−1 Pa, an impressive reproducibility (±2% driven voltage variation over 20 cycles) is obtained. Moreover, emission performances of micro‐emitter arrays are found to exhibit good uniformity. The outstanding stability, reproducibility, and uniformity of the thermionic electron micro‐emitter arrays imply their promising applications as on‐chip integrated electron sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.