Abstract

Rubrene single-crystal transistors have achieved one of the highest carrier mobilities in organic semiconductors. However its thin film transistor usually shows inferior performance due to the poor film quality. Therefore how to obtain large-area and high quality rubrene thin film has become a prominent challenge. This work utilized weak epitaxy growth method with new inducing layer 1,3-di(terphenyl) benzene (m-7P), and lager-area highly ordered terrace rubrene film was obtained. Based on this high quality film, the hole mobility of rubrene polycrystalline thin film transistor has been enhanced to 11.6cm2V−1s−1 with VOPc as buffer layer between semiconductor layer and electrodes. This high device performance was attributed to the flat inducing layer and the single orientation of rubrene domains on m-7P layer, which may reduce grain boundaries and improve the film quality. This easy process to prepare large-area high performance rubrene device supplies a good opportunity for large-area electronic device manufacture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call