Abstract
High performance electrodes for supercapacitor usually are achieved by compositing conductive and redox materials, the former such as multi-walled carbon nanotubes (MWCNTs), graphene, etc., provide the electrical double-layer capacitances that far less than pseudo-capacitances of the later (metal oxide, polyaniline, and so on). Here, carbonaceous composite electrode of MWCNTs and the redox electrolyte are combined into an electrochemical system for high synergetic effect of capacitance. MWCNT is activated by acid treatment and its structures are characterized by scanning electron microscope, X-ray diffraction, and Infrared spectroscopy analyses. The electrochemical measurements of resultant electrodes showed an excellent synergetic effect. The acid-activated MWCNTs electrode exhibited the maximum specific capacitance of 682 F/g in 0.2 M KI redox electrolytes, which is about 2–20 times larger than MWCNTs and its composite electrode in universal electrolyte without KI.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have