Abstract

A GaN metal-insulator-semiconductor-high electron mobility transistor (HEMT) using hybrid ferroelectric charge trap gate stack (FEG-HEMT) is demonstrated for normally-OFF operation. The ferroelectric (FE) polarization increases the number of trapped charges in the HfON charge trapping layer, leading to high positive threshold voltage (V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">th</sub> ) shift for the normally-OFF device. Besides, under the positive bias temperature instability (PBTI) test, the internal electric field induced by FE polarization causes smoother slope of the conduction band in FE gate stack, resulting in better V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">th</sub> stability. With the proposed hybrid FE charge trap gate stack, the device exhibits a high V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">th</sub> of +2.71 V at I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Dh</sub> = 1μA/mm, a high maximum current density of 820 mA/mm and low on-resistance (R <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ON</sub> ) of 11.1 Ω · mm. The FE device also shows good V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">th</sub> -temperature stability compared to the non-FE device results. Besides, a high current device with 40 A is also fabricated in this letter to demonstrate the feasibility of the proposed FEG-HEMT device for high power device application.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.