Abstract

In this work, high-performance epoxy resin (EP) composites with simultaneous excellent thermal conductivity (TC) and outstanding electromagnetic shielding properties are fabricated through the structural synergy of 1D carbon nanotubes and 2D silver-modified boron nitride nanoplates (CNT/AgBNs) to erect microscopic 3D networks on long-range carbon fiber (CF) felt skeletons. The line-plane combination of CNT/AgBNs improve the interfacical bonding involving EP and CF felts and alleviate the phonon scattering at the interface. Eventually, the TC of the EP composites is enhanced by 333% (up to 0.91W m-1 K-1 ) with respect to EP due to the efficient and orderly transmission of phonons along the 3D pathway. Meanwhile, the unique anisotropic structure of CF felt and exceptional insulating BNs diminishes the electronic conduction between CNT and CFs, which protects the through-plane insulating properties of EPcomposites. Furthermore, the EPcomposites present favorable electromagnetic shielding properties (51.36dB) attributed to the multiple reflection and adsorption promoted by the multiple interfaces of stacked AgBNs and heterointerface among CNT/AgBNs, CF felt and EP. Given these distinguishing features, the high-performance EP composites open a convenient avenue for electromagnetic wave (EMW) shielding and thermal management applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call