Abstract

Micromixers present essential roles in providing homogeneous mixtures in microfluidic systems. As the typical passive micromixers, the split-and-recombine (SAR) micromixer and twisted-architecture micromixer have the advantages of high mixing efficiency and low mixing consumption.To enhance the mixing performance , the twisted-architecture micromixer was optimized and improved by introducing 1 to 4 split-and-recombine modules. All micromixers in this work could be fabricated by LCD 3D printers, a rapid prototyping technology. Combined with mixing experiments and numerical simulation, it is proved that the mixing speed and mixing efficiency of these new micromixers are enhanced greatly. Among these new provided micromixers with a 10 mm mixing distance, the torsional micromixer with 4 split-and-recombine modules has the best mixing efficiency of more than 60% as well as a low mixing cost in the Reynolds number range of 0.1 to 100, which shows a quite good application prospects in the accurate and rapid microfluidic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call