Abstract

This paper shows the microfabrication process of a split and recombination (SAR) micromixer and the effect of the cross-sectional rotation of fluidic interfaces, which is based on three dimensional microchannels composed of two poly-dimethysiloxane (PDMS) layers. When fluids pass through the nth SAR mixing unit, the number of interfaces increases to 2n+1−1 through SAR mixing. The cross-sectional rotation of interfaces induced by the different time of expanding at slanted walls enhances mixing efficiency. The effect of the rotation is compared by three types of the SAR micromixer characterized by the existence and the direction of the rotation. The first type, No-R type, has flat walls which do not induce the rotation. The second type, Co-R type, has slanted walls which induce counter-clockwise rotations. The third type, Count-R type, has slanted walls and the counter-clockwise rotation alternates with the clockwise rotation. Water and blue dye is used in the mixing experiment as mixing fluids. Each inlet’s flow rate range is between 1 μl/min (Re0.1179) and 100 μl/min (Re 11.79). In No-R type, there is a clear contrast in interfaces which means that there is no rotation effect in SAR mixing process. In Co-R and Count-R, the contrast is unclear because of the rotation. Mixing in the SAR micromixer is almost complete after the 7th unit, whose length is 4200μm. The performance of the micromixer is estimated by numerical analysis using CFD ACE+. The flow rate and the diffusion coefficient are set 5 μl/min (ReO.5893) and 10−10m2/s, respectively for each inlet. The cross-sectional view of simulational SAR mixing agrees with experimental observations. The simulation estimates that the degree of mixing is more than 90% after the 6th unit of the No-R and Co-R type SAR micromixer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.