Abstract

Improving the comprehensive performance of low alloyed Mg is a significant challenge for biomedical applications. This paper developed a high-performance Mg–Zn alloy with uniform ultrafine grains and nano-precipitates through a straightforward, high-temperature reciprocating equal channel angle extrusion (ECAP) process and researched the microstructure, mechanical property, degradation behaviour, and biocompatibility of the developed alloy. Results showed that the lean Mg–2Zn alloy successfully refined grain to about 1 μm and produced plenty of nano-particles with uniform distribution, providing high comprehensive mechanical properties (YS: 235 MPa, UTS: 267 MPa, EL: 15.6 %). Additionally, Zn-riched nano-particles in the matrix could decrease the Zn aggregation at the corrosion layer-matrix interface and form a dense oxide film, achieving a low degradation rate (0.13 mm/year in vivo). Finally, this work realizes the low alloy content, low cost, and good properties of one biodegradable Mg alloy, which will benefit the promotion of future clinical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.