Abstract
Magnetically-actuated microrobots (MARs) exhibit great potential in biomedicine owing to their precise navigation, wireless actuation and remote operation in confined space. However, most previously explored MARs unfold the drawback of hypodynamic magnetic torque due to low magnetic content, leading to their limited applications in controlled locomotion in fast-flowing fluid and massive cargo carrying to the target position. Here, we report a high-performance pure-nickel magnetically-actuated microrobot (Ni-MAR), prepared by a femtosecond laser polymerization followed by sintering method. Our Ni-MAR possesses a high magnetic content (∼90 wt%), thus resulting in enhanced magnetic torque under low-strength rotating magnetic fields, which enables the microrobot to exhibit high-speed swimming and superior cargo carrying. The maximum velocity of our Ni-MAR, 12.5 body lengths per second, outperforms the velocity of traditional helical MARs. The high-speed Ni-MAR is capable of maintaining controlled locomotion in fast-flowing fluid. Moreover, the Ni-MAR with massive cargo carrying capability can push a 200-times heavier microcube with translation and rotation motion. A single cell and multiple cells can be transported facilely by a single Ni-MAR to the target position. This work provides a scheme for fabricating high-performance magnetic microrobots, which holds great promise for targeted therapy and drug delivery in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.