Abstract

Magnetic soft microrobots have great potential to access narrow spaces and conduct multiple tasks in the biomedical field. Until now, drug delivery, microsurgery, disease diagnosis, and dredging the blocked blood vessel have been realized by magnetic soft microrobots invivo or invitro. However, as the tasks become more and more complex, more functional units have been embedded in the body of the developed magnetic microrobots. These magnetic soft microrobots with complex designed geometries, mechanisms, and magnetic orientation are now greatly challenging the fabrication of the magnetic microrobots. In this paper, we propose a new method combining photopolymerization and assembly for the fabrication of magnetic soft microrobots. Utilizing the micro-hand assembly system, magnetic modules with different shapes and materials are firstly arrayed with precise position and orientation control. Then, the developed photopolymerization system is employed to fix and link these modules with soft materials. Based on the proposed fabrication method, 3 kinds of soft magnetic microrobots were fabricated, and the fundamental locomotion was presented. We believe that the presented fabrication strategy could help accelerate the clinical application of magnetic microrobots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.