Abstract

An area-efficient high Wallace tree multiplier using adders is presented in this paper. The proposed Wallace tree multiplier is designed using logic gates and adders. The design is implemented in Cadence Virtuoso using a 45-nm technology library. The proposed design offers reduced delay and higher performance than conventional multipliers using carry-save adders with majority-based gate adder logic. The design also offers a reduced transistor count of 12, which is minimal compared to that of the conventional design. One of the fundamental building blocks of many VLSI applications is multipliers. To enhance the performance of circuits and systems, the design of multipliers is very important. The key feature of a high-performance Wallace tree multiplier lies in its efficient reduction of partial product additions. By utilising a combination of carry-save and carry-propagate adders, it minimises the critical path delay and maximises the speed of multiplication. Additionally, advanced optimisation techniques such as parallel prefix adders and parallel carry-save adders can be employed to further improve performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.