Abstract

The performance of organic field-effect transistors (OFETs) fabricated utilizing vacuum deposited n-type conjugated molecule N,N’-Dioctadecyl-1,4,5,8-naphthalenetetracarboxylic diimide (NDIOD2) were investigated using single and bilayer dielectric system over a low-cost glass substrate. Single layer device structure consists of Poly (vinyl alcohol) (PVA) as the dielectric material whereas the bilayer systems contain two different device configuration namely aluminum oxide/Poly (vinyl alcohol) (Al2O3/PVA) and aluminum oxide/Poly (methyl mefhacrylate) (Al2O3/PMMA) in order to reduce the operating voltage and improve the device performance. It was observed that the devices with Al2O3/PMMA bilayer dielectric system and top contact aluminum electrodes exhibit excellent n-channel behaviour under vacuum compared to the other two structures with electron mobility value of 0.32 cm2/Vs, threshold voltages ~1.8 V and current on/off ratio ~104, operating under a very low voltage (6 V). These devices demonstrate highly stable electrical behaviour under multiple scans and low threshold voltage instability in vacuum condition even after 7 days than the Al2O3/PVA device structure. This low operating voltage, high performance OTFT device with bilayer dielectric system is expected to have diverse applications in the next generation of OTFT technologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.