Abstract

A series of ethylene/1-octene copolymers with different chemical composition was separated in six binary mobile phases using solvent gradients and a column packed with porous graphite Hypercarb™. It was found that the elution volumes of the samples were to a larger extent influenced by the choice of desorption promoting solvent (desorli: 1,2-dichlorobenzene vs. 1,2,4-trichlorobenzene) than by the choice of adsorption promoting solvent (2-ethyl-1-hexanol, 1-decanol, n-decane). Elution volumes increased with decreasing number of chlorine atoms in the desorlis as well as with increasing polarity of the adsorlis. The resolution of HPLC systems depended pronouncedly on the choice of solvent pair: While in the majority of the tested HPLC systems, the chromatograms of the polymer samples indicate a shoulder, in n-decane→TCB the samples eluted without indication of a shoulder. In addition to the influence of different solvents on the samples elution behavior, the response of the employed detector, an evaporative light scattering detector (ELSD), was investigated. Its response was found to depend pronouncedly on the nature of the used solvents. Overall, the solvent pair 1-decanol→TCB appears to be the optimal compromise between the considered parameters and thus the best choice for HPLC of ethylene/1-octene copolymers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call