Abstract

Abstract Dielectric capacitors possessing large energy storage density, high efficiency and high thermal stability simultaneously are very attractive in modern electronic devices to be operated in harsh environment. Here, it is demonstrated that large energy storage density (W ∼ 15.5 J/cm3), ultra-high efficiency (η ∼93.7%) and high thermal stability (the variation of both W from 20 °C to 260 °C and η from 20 °C to 140 °C is less than 5%) have been simultaneously achieved in the La-doped (Ba0.904Ca0.096)0.9775+xLa0.015(Zr0.136Ti0.864)O3 (x = 0.0075) lead-free relaxor ferroelectric thin film capacitors deposited on LaNiO3/Pt composite bottom electrodes by using a sol-gel method. The good energy storage property of the thin film capacitors at x = 0.0075 is mainly ascribed to the diversity of the structure of the nano-clusters around the three-phases coexisting component point (Ba0.904Ca0.096)(Zr0.136Ti0.864)O3 where cubic, tetragonal and rhombohedral phases coexisted, as well as the ultra-high quality of thin film due to the utilization of the LaNiO3/Pt composite bottom electrode, making it a promising candidate for dielectric capacitors working in harsh environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.