Abstract
With the rapid increase in demand for high-energy-density lithium-ion batteries in electric vehicles, smart homes, electric-powered tools, intelligent transportation, and other markets, high-nickel multi-element materials are considered to be one of the most promising cathode candidates for large-scale industrial applications due to their advantages of high capacity, low cost, and good cycle performance. In response to the competitive pressure of the low-cost lithium iron phosphate battery, high-nickel multi-element cathode materials need to continuously increase their nickel content and reduce their cobalt content or even be cobalt-free and also need to solve a series of problems, such as crystal structure stability, particle microcracks and breakage, cycle life, thermal stability, and safety. In this regard, the research progress of high-nickel multi-element cathode materials in recent years is reviewed and analyzed, and the progress of performance optimization is summarized from the aspects of precursor orientational growth, bulk phase doping, surface coating, interface modification, crystal morphology optimization, composite structure design, etc. Finally, according to the industrialization demand of high-energy-density lithium-ion batteries and the challenges faced by high-nickel multi-element cathode materials, the performance optimization direction of high-nickel multi-element cathode materials in the future is proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.