Abstract

Hard carbon (HC) is one of the most promising anode materials for sodium-ion batteries (SIBs) due to its suitable potential and high reversible capacity. At the same time, the correlation between carbon local structure and sodium-ion storage behavior is not clearly understood. In this paper, the two series of HC materials with perfect spherical morphology and tailored microstructures were designed and successfully produced using resorcinol formaldehyde (RF) resin as precursor. Via hydrothermal self-assembly and controlled pyrolysis, RF is a flexible precursor for high-purity carbon with a wide range of local-structure variation. Using these processes, one series of five representative RF-based HC nanospheres with varying degrees of graphitization were obtained from an RF precursor at different carbonization temperatures. The other series of HC materials with various microscopic carbon layer lengths and shapes was achieved by carbonizing five RF precursors with different cross-linking degrees at a single c...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call