Abstract

Low-cost shortwave infrared detectors have great potential for emerging civilian night-vision applications. This paper reports the characteristics of Ge0.89Sn0.11 photodiodes monolithically grown on a Si substrate that holds great promise for those applications. At room temperature, the 500 μm diameter active area device demonstrated a longwave cutoff of 2.65 μm and a responsivity of 0.32 A/W at 2 μm, which corresponds to an external quantum efficiency of 20% without any contribution from the Ge buffer layer. The measured peak specific detectivity at 300 K and 77 K is 1.7 × 109 Jones and 4.3 × 109 Jones, respectively. The specific detectivity at 77 K is only one-order-of-magnitude lower than that of the market dominating extended-InGaAs photodiode. The detailed device analysis indicated that the 700-nm thick fully relaxed high-quality GeSn absorbing layer and the modified depletion region lead to the above-mentioned device performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.