Abstract

A novel thermally cross-linkable, n-doped conductive fullerene material is developed by incorporating tetrabutylammonium iodide (TBAI) as the dopant into an azidofullerene derivative PCBN3. The application of TBAI-doped cross-linked PCBN3 film as the electron transport layer (ETL) in polymer solar cells (PSCs) delivers several remarkable features, including easy solution-processability, reasonable electrical conductivity (2.8 × 10–3 S cm–1), good ambient and chemical stability, fine-tunability of the work function of the electrode, wide applicability in a variety of efficient polymers, relative weak thickness-dependent performance property, and moderate cross-linking temperature (∼140 °C). With this ETL, a single-junction solar cell based on the blend of poly[[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl]] (PTB7) with [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) delivers a power conversion efficiency (PCE) up to 8.8...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call