Abstract
Abstract Despite the evolution of targeted therapies in oncology, some challenges such as screening and early diagnosis of cancer-related biomarkers still remain. The analysis of the Human Epidermal growth factor Receptor 2 (HER2) in biological fluids provides essential information for effective treatments. In this work we report the development of an electrochemical immunomagnetic bioassay for the analysis of the extracellular domain of HER2 (HER2-ECD) in human serum and cancer cells. Biomodified carboxylic acid functionalized magnetic beads (COOH-MBs) were used as the capture probe and an antibody labelled with alkaline phosphatase (AP) as the signalling probe. In the presence of HER2-ECD a sandwich complex was formed on the MBs, which were magnetically attracted to the surface of a screen-printed carbon electrode (SPCE). After the addition of 3-indoxyl phosphate and silver ions, used as the enzymatic substrate, the immunological interaction was detected by linear sweep voltammetry. Two linear concentration ranges were established: one between 5.0 and 50 ng/mL and another between 50 and 100 ng/mL. The developed assay provided a clinically useful detection limit (2.8 ng/mL) and has an adequate precision (Vx0
Accepted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have