Abstract

With the continuous development of today's technology, IC design becomes a more complex process. The designer now not only takes care of the normal design and layout parameters as usual, but also needs to consider the process variation impact on the design to preserve the same chip functionality with no failure during fabrication. In the current process, schematic designers go through extensive simulations to cover all the possible variations of their design parameters and hence of the design functionality. At the same time, layout designers perform time-consuming process-aware simulations (such as lithography simulations) on the full chip layout, which impacts the design turnaround time. In this paper, we present a fast physical layout-and electrical-aware Design-For-Manufacturability (DFM) solution that detects hotspot areas in the full chip design without requiring extensive electrical and process simulations. Novel algorithms are proposed to implement the engines that are used to develop this solution. Our proposed flow is examined on a 45 nm industrial Finite Impulse Response (FIR) full chip. The proposed methodology is able to define a list of electrical hotspot devices located on the FIR critical path that experience up to 17% variation in their DC current values due to the effect of process and design context. The total runtime needed to identify and detect these electrical hotspots on the FIR full chip takes nearly 3 minutes, compared to hours when using conventional electrical and process simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.