Abstract

Double recessed T-gate Al <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.2</sub> Ga <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.8</sub> As/In <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.25</sub> Ga <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">0.75</sub> As pseudomorphic HEMTs with 0.3 μm gate length and different upper recess widths have been processed and analyzed. Systematic investigations concerning the correlation between drain ledge, breakdown voltage and power performance have been carried out. An optimum upper recess width has been identified which yields to a high drain-source breakdown voltage of about 24 V. A state of the art saturated output power density of 1080 mW/mm at 2 GHz is demonstrated under CW-mode of operation. DC and power measurements are performed on wafers which are not thinned.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.