Abstract

The direct electron transfer reaction of fructose dehydrogenase (FDH) from Gluconobacter sp. on alkanethiol-modified gold nanoparticles (AuNPs) was examined. AuNP-modified electrodes were simply fabricated by depositing citrate-reduced gold nanoparticles onto a gold electrode and carbon fiber paper and then covering the surface with a self-assembled monolayer of alkanethiols. The immobilization of AuNPs provided a large effective surface area for the adsorption of FDH. Catalytic oxidation currents based on the direct electron transfer reaction of FDH were observed from a potential about −100 mV (vs. Ag/AgCl, 3 M NaCl) in the presence of d-fructose without a mediator. The current density reached as high as 14.3 ± 0.93 mA/cm 2 (at +500 mV), which was achieved in the presence of 200 mM d-fructose by immobilization of FDH on 2-mercaptoethanol-modified AuNP/carbon fiber paper electrodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call